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A gyroscope following a closed polar orbit in the Kerr spacetime is considered. An exact expression is derived giving the 
shift of the gyroscope's orientation per revolution in terms of the mass and angular momentum parameters of the Kerr metric 
and the orbit's coordinate radius. 

As first realized in the context of the Thirring and Lense [1] approximate solution of Einstein's 
equations, the magnetic-like components of the gravitational field of a rotating body produce a set of 
characteristic effects which provide, in principle, new ground for testing the theory of general relativity. 
One such effect consists of the dragging of the line of nodes of bound orbits in the direction of rotation of 
the center of attraction and bears the name of Lense and Thirring (LT). Another relates to the well-known 
geodetic effect [2], which refers to the precession of a gyroscope's spin when the gyroscope falls freely in a 
gravitational field. Specifically, the central body's angular momentum influences the rate and direction of 
the gyroscope's precession by an amount given by the so-called "Schiff term" in a well established 
approximate formula for the total rate of precession [3]. 

Sakina and Chiba [4] have derived an exact expression for the gyroscope precession in the case of an 
equatorial circular orbit in the Kerr spacetime. In the present paper we consider the geodetic effect in the 
same geometry but for the case of a spherical polar orbit. The interest in polar timelike orbits derives from 
two sources. The first consists of the fact that, when the carrier of the gyroscope follows such an orbit, 
both the geodetic and the LT effect are simultaneously present. The second is their pertinence to 
gravitational experiments. 

Specifically, while nodal dragging and spin precession are in general quite small, recent technological 
advances seem to have rendered both measurable even in the case of the weak gravitational field of the 
earth. This has led van Patten and Everitt [5] and Schiff [6] to propose respective experiments for 
measuring these effects, and the one devised by Schiff is presently conducted by Everitt, Fiarbank and 
their collaborators [7] at Stanford University. 

Since both experiments involve artificial sattelites in polar orbit around the earth we expect the results 
of our analysis to shed light on qualitative aspects of these experiments such as the way in which the 
geodetic and LT effects intertwine. 

Consider, then, a timelike geodesic C(r) ,  r denoting proper time, which at ~- = 0 crosses the symmetry 
axis of the Kerr spacetime. In the (t, r, 0, ~) coordinate system of Boyer and Lindquist this axis lies along 
sin 0 = 0 and we will assume that 0(0) = 0. We will further assume that C ( r )  is subsequently confined to 
the r = const hypersurface. This guarantees that after some time, T, say, the geodesic will return to the 
starting spatial point. Carter's first integrals of motion for such a spherical geodesic read [8,9] 

i = A E / A ~ ,  /" = 0, (1,2) 

~j202 = K -  a 2 cos20 - a2E 2 sin20, + = 2 M a E r / A Z ,  (3,4) 
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where the dot denotes differentiation with respect to proper  time, 

Z = r  2 + a  2 cosZ0, 

A = r 2 - 2 M r  + a 2, 

A = ( r  2 + a2)  2 - a 2A sin20, 

(5) 

(6) 

(7) 

and E, K stand for the energy per unit mass at infinity and Carter 's  constant,  respectively. In our case, 
these constants are determined by the orbit 's  coordinate  radius, r, and the metric 's mass and angular 
momentum parameters,  m and a, via the relations [9] 

~:~ = a ( ~  +/~ ) / ( a  ~ + r ~ )  '- 

a n d  

K =  ( M r  4 -  a2r  3 - 3 M a 2 r  2 + a 4 r ) / ( r  3 - 3 M r  2 + a2r + M a  2).  

Assume, now, that a gyroscope falls freely along C(z) .  Then 

(8) 

(9) 

its spin vector S (~)  is parallelly 
t ransported along the given geodesic. This, in turn, implies that, in a parallelly t ransported or thonormal  
tetrad {X{,)}, a = 0, 1, 2, 3, with X(0) tangent to C( r ) ,  the gyroscope's  spin stays constant  and S I°~= 0. 
Relative to an arbitrary comoving frame, on the other hand, the vector S will precess. In order to describe 
this precession relative to the asymptot ic  frame of  the Kerr  spacetime, we will construct  a comoving tetrad 
which is uniquely related to the coordinate axes at each point  of  the gyroscope's  orbit. 

We start this construct ion by considering the base ( e ,  } where 

e 0 = ( A / ~ A ) ' / 2 a ,  + [ 2 M a r / ( A ~ A )  '/2] ~,~, e, = ( A / ~ ) ' / 2 ~ r ,  (9,10) 

e 2 = ( 1 / , Y ) ' / 2 8 o ,  e s = ( Z / a ) a / 2 ( 1 / s i n  0 ) 2 , .  (11,12) 

In this base the Kerr metric takes the form 

ds 2 = ~,,i,e a ® e t,, (13) 

where 7/,,~, = d i a g ( -  1, + 1 ,  +1 ,  + 1 )  and ( e " }  are one-forms dual to ( % } .  
Then, according to (1)-(4), the vectors 

e6 = p e  ° + Qe2,  ei = el ' (14,15) 

e~ = Qe o + P e  2 , e~ = e 3, (16,17) 

where 

P = ( A / Z A ) ' / 2 E  and Q = Z 1 / z t )  (18) 

form a comoving frame along C( r ) .  
This frame, however, is not well defined on the symmetry  axis, because the base (e, ,)  is expressed in 

terms of the Boyer -Lindquis t  coordinate system and the latter is singular at sin 0 = 0. But, it is well known 
that this is a coordinate singularity and this can be seen explicitly by writting the metric in the Kerr -Schi ld  
coordinates (x °, x, y, z). On the symmetry  axis the metric reads [10] 

ds  2 = - [ 1  - 2 M z / ( z  2 + a2)]  d ( x ° )  2 + [1 - 2 M z / ( z  2 + a 2] - '  dz  2 + d x  2 + d y  2, (19) 

while, as sin 0 --+ 0, 

e o ~  [1 - 2 M z / ( z 2 + a 2 ) ]  1/20xO, e 1 ~ [1 - 2 M z / ( z 2 + a 2 ) ] l / 2 ~ : ,  (20,21) 

e 2 --, cos q~ O~ + sin 0 8~, e 3 ~ - sin q5 it~ + cos 0 0~" (22,23) 
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Thus, by choosing the direction along which the orbit emerges from the z-axis one can smoothly join 
the orthonormal base {% ) given by (9)-(12) to a unique coordinate-tied tetrad there. We will assume that 
initially q~ = 0. Then, the gyroscope will return to the starting point on the z-axis along a direction which is 
determined by putting 

4~ = 8 M a E r K (  k ) / A  L 1/2 (24) 

in (22) and (23), where K ( k )  denotes the complete elliptic integral of the first kind, 

k 2 = a2(1 - E 2 ) / L ,  L = K -  a2E 2. (25,26) 

The value of q~ given in (24) is obtained by integrating the equations of motion (1)-(4) [9,11,12], and is 
equal to the angle by which the line of nodes advances each time the gyroscope completes an oscillation in 
latitude. 

We can, now, make use of Marck's [13] construction of a parallelly transported orthonormal tetrad 
along an arbitrary timelike geodesic of the Kerr spacetime in order to express the vectors { ~ ) }  in the 
coordinate-tied comoving base (ea}. Obviously, )'(0~ =e6,  while for the spacelike {)~(i~}, i =  1, 2, 3, 
Marck's solution gives 

X(1 ) = cos f f ' ( r )  1~'(1,- sin kO(¢) X'(3), (27) 

)~2) = P ( 1 / K A ) ' / 2 (  r2 + a2) a cos 0 e i - ( A / K A ) I / 2 a r  sin 0 e~ - Q ( 1 / K A ) ' / 2 ( r  2 + a2 ) r  es, (28) 

)~(s) = sin ~P(¢) )¢,O + cos ' / ' (¢)  )¢o), (29) 

where the angle q ( r )  is determined by the equation 

;t" = E K  ' /Z ( K - a2 ) / (  r 2 + K )( K - a 2 cos20), (30) 

~"~1) = a P ( 1 / K A  ) ~/2( r2 + aZ)re~ + fl( A / K A  ) 1/2a2 sin 0 cos 0 e~ 

+ f l Q ( 1 / K A ) ~ / 2 ( r  2 + a 2 ) a  cos 0 e~, (31) 

~k'(3 ) = f l Q [ ~ , / A ( K +  r2)]~/2(r 2 + a 2) e~ - f l [ S A / A ( K +  r2)] l /2a  sin 0 e~, (32) 

where 

a2 = f l -2  = ( K -  a 2 cos20 ) / (  K + r2).  (33) 

Integrating (30) over a complete oscillation in latitude, we obtain 

~P = - , ( 0 ) 4 E ( K -  a 2 ) ( ( K +  r 2 ) H ( k ,  n )  - K K ( k ) ) / ( K L ) 1 / 2 ( K +  r2),  (34) 

where ~(0) is the sign of t~, 

n = a 2 / K ,  (35) 

and H ( k ,  n)  denotes the complete elliptic integral of the third kind [14]. 
Let us assume that ~'(0) = 0 and the S'(0) are the components of the gyroscope's spin at that instant. 

Then it follows from (27)-(32) that, upon the gyroscope's return to the starting point, the components of 
the spin vector in the comoving frame (eT) will have changed to S~(T~), where 

S~(T~) = R~S)(O),  (36) 
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^ 

with the matrix R )  being equal to 

1 + (cos q " -  1) cos2Z 

R;~ = sin '/" cos Z 
1 

(cos q ' -  1) sin Z cos Z 

where 

- sin ,/" cos Z 

cos q" 

- s i n  '/" sin Z 

(cos q ' - l )  sin Z c o s  Z 

sin qt sin Z 

1 + (cos ' / " -  1 sin2Z 

(37) 

cot Z = ( a / r ) (  K + r2) t /2 / (  K - a2) 1/2. (38) 

This means that in each revolution of the gyroscope about  the gravitat ing center its spin rotates by an 
angle '/" a round  an axis which is incl ined by an angle Z relative to e i and lies in the e i -e~ plane of the 
comoving frame {e;}. Dur ing  the same interval the frame {el} itself rotates with respect to the x - y  z 
coordinate  system by an angle 4, given by (24) about  the z-axis which coincides with the vector e i at the 
beg inn ing  and the end of the cycle. 

Let us note, in conclusion,  that the way in which the angular  m o m e n t u m  parameter  a influences the 
geodetic effect is made clear by letting a vanish in (24), (34) and (38). Then  one obtains  the values 0, ~ / 2  
and  - 2 v ( 1 -  3 M / r )  172 for 6, Z, and '/', respectively, which correspond to a p lanar  orbit  with the 

gyroscope's spin rotat ing about  an axis normal  to the orbit 's  plane. This is the well-known result for the 
geodetic effect in the Schwarzschild spacetime [2]. 
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